
PARALLEL PRocEssoRs AND
NONLINEAR STRUCTURAL DYNAKICS Au;oEcITlll4S AND SOFlWARE

Principal Investigator: Ted Belytschko

Department of Civil Engineering
Northwestern University

Evanston, Illinois 60208-3109

Semiannual Progress Report

December 1, 1988 though May 31, 1989

NASA Research Grant NAG-1-650

(EASA-CR-185049) P A R A L L E L €ECCIiSSG&S A N D H8 9-2 56 2 0
N C P L I E E A & S 1 6 G C I I ; E A L CYBALEIC5 ALGCBIITHI'I3 AND
S C E l h P B E SeIKianEuhl Exogress LrFcrt, 1 Dec.
1468 - 3 1 B a y 1585 (bcrthuesterf i Caiv.) Unclas
4: p CSCL 09B 63/62 0211718

PREFACE

This research was conducted under the direction of Professor Ted
Participating research assistants were Noreen D. Belytschko.

Gilbertsen, Mark 0. Neal, and Edward J. Plaskacz. The help of Argonne
National Laboratory, particularly Dr. James M. Kennedy who provided
access to several parallel computing machines, is also appreciated.

The following papers supported by NASA-Langley were submitted for
publication:

Ted Belytschko, Edward J. Plaskacz, James M. Kennedy, and Donald
L. Greenwell, "Finite Element Analysis on the CONNECTION
Machine", ComDuter Methods in ADDlied Mechanics and Eneineerinq,
submitted.

Mark 0. Neal and Ted Belytschko, "Explicit-Explicit Subcycling
with Non-Integer Time Step Ratios for Structural Dynamic
Systems", ComDuters and Structures, submitted.

P. Smolinski, Ted Belytschko, and M. Neal, "Multi-Time-Step
Integration Using Nodal Partitioning", International Journal for
Numerical Methods in Eneineering, zc, 349-359, 1988.

ii

-1-

Abstract

This paper describes the adaptation of a finite element program with

explicit time integration to a massively parallel SIMD computer, the

CONNECTION Machine. The adaptation required the development of a new

algorithm, called the exchange algorithm, in which all nodal variables are

allocated to the element with an exchange of nodal forces at each time step.

The architectural and C* programming language features of the CONNECTION

Machine are also summarized. Various alternate data structures and associated

algorithms for nonlinear finite element analysis are discussed and compared.

Results are presented which demonstrate that the CONNECTION Machine is capable

of outperforming the CRAY XMP/14.

1. INTRODUCTION

This paper describes a data management scheme and an associated algorithm

for highly parallel (on the order of lo3 processors) computers with local

memory for nonlinear finite element analysis. The algorithms are either

explicit or iterative implicit. The salient feature of this method is the

allocation of all nodal variables to the element and an exchange of nodal

forces at each time step in the procedure to maintain compatibility between

elements. This algorithm has proven highly efficient on the CONNECTION

machine. For a 16 K processor model, the speed of the CRAY X-MP/14 is

exceeded by a factor of 3 for meshes consisting of 16 K elements. Even

greater gains in speed are anticipated for larger meshes running on larger

versions of the CONNECTION machine. The largest version of the CONNECTION

machine has 65,536 (64 K) processors.

The development of the CONNECTION machine is a manifestation of

aggressive competition to attain speedups in the computer design community.

-2-

It is widely acknowledged that the computational performance enhancements of a

computer based on a Von Neumann architecture, i.e. single-instruction single-

data (SISD) are approaching an asymptote due to the material limitations of

the underlying hardware. Thus increasing attention has been devoted to

alternate computer architectures falling under the three broad categories,

first described by Flynn [6] in 1966 and summarized by Desrouchers [5]:

1. SIMD - single instruction multiple data. All processors execute the

same instruction, however each processor uses its own data.

2. MISD - multiple instruction single data. Each processor has a unique

instruction stream which operates on the same data stream.

3. MIMD -multiple instruction multiple data. Each processor has its

own independent instruction and data streams. In general,

processors are operating asynchronously and communication

between processors is minimal.

Each of these alternate architectures requires a change in the way a

programmer formulates his algorithm and develops the underlying code. The

programmer must establish a sensitivity to the computer architecture he is

working with to a degree unprecedented in the SISD era. An efficient and

effective algorithm exploits the strengths of the underlying computer

architecture while de-emphasizing its weaknesses.

The CONNECTION machine consists of up to 64 K processors, each processor

is able to communicate with any other, hence the name "CONNECTION" machine.

For massively parallel machines, the SIMD architecture with processor

allocated memory is the most natural of the three alternate architectures.

The programming model is to think of the processors as representing, for

example, a collection of particles. Now given the task o f calculating the

state of each element, instead of using the SISD approach of looping over all

r 1

-3-

the particles one issues single instructions which are performed simultane-

ously by all the processors. This is an extremely natural way of performing

the same set of instructions for each "element" in parallel.

While SIMD programming is initially easy to learn, to gain real

performance requires experimentation. The general trends observed while

implementing finite element algorithms on the CONNECTION Machine will be

presented in subsequent sections.

A SIMD programming environment is reminiscent of vectorization with the

exception that vectorization employs shared memory. Coarse grained SIMD

parallelism with shared memory typically entails a distribution of data across

a few processors in much the same way data is distributed across the registers

of a vector processor. Shared memory simplifies the adaptation of algorithms

designed for a Von Neumann architecture substantially. With a partitioned

memory and fine grained parallelism the difficulties are much greater.

Partitioned memory demands efficient data management which often results in a

complete redesign of the algorithm. Where a sequential computer would have

one processor do 8000 iterations of a loop, a coarse grained SIMD parallel

(vector) computer with, for example, 8 processors (registers) will execute

1000 interations of the loop on each processor (register), and a fine grained

(massively parallel) will execute the body of the loop once on each processor.

The differences in architecture also manifest themselves in the

appearance of the final code. Code adaptation for a vector computer places a

heavy emphasis on efficient GATHER-ASSEMBLE and eliminating nested inner loops

by rep1 ication. This frequently obfuscates the underlying physics behind the

computation. On the other hand, in a massively parallel partitioned memory

environment state variables such as area are transformed from arrays in a SISD

environment to scalars across the 'Iwidth" of the computer. Inner loops remain

-4-

intact while outermost loops are replaced by a selection statement signaling

that the subsequent body of code is to be executed in parallel. This

inevitably results in a more readable code.

Para1 le1 implementations have been considered by several investigators.

Nour-Omid and Park [2] have reported on the implementation of implicit solvers

on Hypercube MIMD machines with large partitioned memories. Belytschko and

Gilbertsen [101 have described the implementation of explicit time integration

with subcycling in a MIMD computer with shared memory. Neither of these

implementations required the extent of restructuring of the algorithm and data

structure as in a massively parallel SIMD partitioned architecture.

In this paper, the algorithm and data structure for dynamic nonlinear

finite element analysis based on explicit time integration is described. A

complete redesign which favors redundant calculations over the assembly of the

global force vector from the element nodal force vectors (ASSEMBLE) was

necessary. We will describe the redesigned algorithm and data structure in

the context of one-dimensional and two-dimensional problems, a1 though the

three dimensional problem is most appropriate.

An outline of the paper is as follows. In Section 2, the CONNECTION

machine architecture is described in greater detail. The focus i s on

hypercube topology and interprocessor communication. Section 3 describes the

governing equations for finite element analysis and a comparison between their

implementation on the Von Neumann and SIMD computers. Several CONNECTION

Machine finite element algorithm prototypes are discussed. Section 4

describes the Cf programming language for the CONNECTION Machine. Coding

examples for the one dimensional problem are presented. Section 5 compares

the performance of the CONNECTION Machine to the CRAY XMP/14 one of the most

powerful SISD machines available. Section 6 summarizes and draws conclusions

from all tests performed.

1 I

-5-

2. CONNECTION MACHINE ARCHITECTURE

The CONNECTION machine system consists of a front end computer, a

parallel processing unit consisting of 16 K to 64 K data processors, each with

a local memory, and (optionally) an 1/0 system that supports mass storage and

graphics display devices. The front end computer is a conventional SISD

computer which implements a standard operating system and extended versions of

standard programming languages to facilitate code development. Programs

developed for the CONNECTION machine are similar to programs developed for

SISD machines with the exception that loops over the number of elements or the

number of nodes in a finite element model are replaced by single commands

activating many processors in the CONNECTION machine to simultaneously perform

calculations on data residing within their local memories.

The parallel processing unit is an extension of the front end. One can

think of the CM as intelligent memory. All code resides in the front end

computer. The CM compliers translate serial code directly to the native

assembly language of the front end while parallel code is translated to a mix

of native assembly code and a special instruction set called PARIS (parallel

- instruction set). The PARIS calls result in operations addressing the front

end bus interface which allows communication with the CONNECTION machine. In

other words, upon encountering a parallel statement, the front end dictates

the command to all activated processors. The fundamental building block of

the parallel processing unit is an integrated circuit consisting of 16

processors and a routing device for interprocessor communication among

processors located on different chips. Each processor has 64 K bits of

memory. In addition, each pair of chips has an optional floating point

accelerator. Taking advantage of the floating point accelerator requires no

change in user software.

1 L

-6-

Each algorithm requires its own pattern of communication and hence each

processor may need to communicate with any other. The construction of a

direct connection between every pair of processors is impractical since a 64 K

CONNECTION machine would require over 2 billion wires. Among the grid based

processor interconnection schemes, the hypercube topology offers several

distinct advantages. A single 16 processor chip can be thought of as a "zero-

cube". Connecting two zero-cubes with a single wire yields a "one-cube".

Connecting two 'one-cubes" at their corresponding vertices yields a Y w o -

cube". Repeating this process yields a "twelve-cube' with 212 (4096)

vertices. With 16 processors per vertex, a twelve cube can arrange 65,536

(64 K) processors with no processor more than 12 wires away.

It is important to note that in the description of the Boolean n-cube,

each successive n-cube was established by linking the corresponding vertices

of the previous cube. Therefore, each cube in an n-cube has two subcubes. A

twelve cube is built up from two ll-cubes. Each ll-cube consists of two 10

cubes. This arrangement is in harmony with the binary logic of a computer as

each subcube may be designated as either 0 or 1. Thus, each vertex of a 12-

cube can be assigned a unique 12 bit address. Each message in the CONNECTION

machine consists o f an address and either data or an instruction. Messages

are passed between routing devices which process the address field one bit at

a time. There are many paths between any two processors; should some of them

be blocked by other messages passing through the CONNECTION machine, the

router may choose an alternate free path by simply processing the bits of the

address in a different order.

Figure 1 illustrates two alternate routes between chips located on two

The three-cube may be viewed as consisting of three

That is, a pair of x planes, a pair of y planes, and a pair

vertices o f a three-cube.

pairs o f planes.

-7-

of z planes. Each plane within a pair is designated as 0 or 1. Thus each

vertex of a three-cube can be assigned a unique binary address whose bits are

determined by which member of each pair of planes it lies on.

In Figure la, a message is passed from 000 to 111. The router reads the

first bit and sends the message to 100. There, the router reads the second

bit and sends the message to 110. Finally the router reads the third bit and

sends the message to its destination. Figure lb illustrates the hypothetical

situation where the router must select an alternate route between 000 and

111. At step one, the router has read the first bit of the destination

address and has determined that the wire connecting 000 and 100 is already

occupied by a transmission in progress. The router may then simply process

the second bit first, sending the message to 010. The router then processes

the first bit which results in the message being sent to 110. Finally the

router processes the third bit and sends the message to is destination.

The same principle applies to the 12-cube of the CONNECTION Machine.

Each vertex in the 12 cube has a unique address specified by a string of 12

bits. The first bit specifies which of the 11-cubes within the 12-cube

contains the desired point. The second bit specifies which o f the 10-cubes

w i t h i n t h e 11 cube contains the desi red p o i n t and so on until the twelfth b i t

specifies which of the 0-cubes within the appropriate 1-cube is the desired

vertex.

The above form of communication is called router communication and

derives its name from the mechanism employed to pass messages between any two

processors. A second mechanism for interprocessor communication which i s much

less general but, as will be subsequently shown, faster, is NEWS communi-

cation. The NEWS communication scheme establishes a PARIS instruction set

through which the processors may be organized into an n-dimensional grid by

-8-

the programmer and every processor is allowed to send data to its immediate

neighbors in the grid. n can be any integer between 1 and 31 (inclusive), and

the size of a dimension must be a power of 2. NEWS interprocessor communi-

cation derives its name from the initials of the four principle directions:

North, East, West, and South. This type of communication is only applicable

to structured finite element meshes. The node spacing need not be regular but

the element topology must be regular with at most 8 nearest neighbors. Meshes

generated by quadtree and octree methods fit these criteria.

3. QUADRILATERAL PLANE STRESS CONTINUUM ELEMENT

A four node isoparametric quadrilateral element was implemented to design

the algorithm and benchmark the performance of the CONNECTION Machine in the

solution, for the displacement field u - - (x , t), of the following initial value-

boundary value problem.

equation of motion: gT .. + = p i (1)

strain-displacement: E = D - - u in n (2)

stress-strain law: .. = = 2 (5) (3)

boundary cond i ti ons

prescr

prescr

-
bed displacement:

bed traction:

u = u on ru

o n = T on rT

rut! r = r

run rT = 4

- " - - -
T

i ni ti a1 condi ti ons

initial displacement: u, (5 , 0) = 9 0

initial velocity: 4 (5 , 0) = i o

where ,

-9-

= { = displacements, which are the unknowns

a
ax

t denotes time

n denotes a unit normal to a ."
A superimposed dot denotes differential with respect to time.

For a liner isotropic material, (3) is replaced by

z = c o I . d

C = - E
1 - v

2

1
V i 0 V

1

0 1-v -
2 :I

C is the constitutive matrix which for the case of isotropic linear elastic

materials is determined solely by the two elastic constants E (Young's modulus

or elastic modulus) and u (Poisson's ratio).

-

- 10-

In the finite element method the unknown, which is the displacement

field u (x, t), is interpolated by element shape functions N in the form * * ”

where ye are the nodal displacements of the element. For the four-node

quadrilateral which will be used here

!e = [!}
Each node of a 2D continuum element has two degrees o f freedom.

The relationship between the element nodal displacement vector and the

global nodal displacement is given by

where Le is a Boolean connectivity matrix for element e which maps global

nodal quantities to local nodal quantities. This matrix is never actually

constructed in finite element analysis. The information it contains i s

instead stored in an element connectivity array, IX(1,JE). IX(I,JE), I = 1,4

gives the global node numbers of element JE. The operation of extracting the

-11-

element nodal displacements from the global array, Eq. (14), is called the

GATHER operation.

Performing a finite element semidiscretization on the initial value-

boundary value problem, Eqs. (1) to (4) yields a system of ordinary differ-

ential equations in time (see Belytschko (1983)).

I = 1 to nn - M I !!I - f I

where nn is the number of nodes in the mesh. The nodal forces are given by

T f = c Le fe
e

ext int f = f - f e -e -e

i nt
fe = 8 BT u " dn

'e

fext = 8 NT b dn + 8 -e - I - . u
NT T* da

e 'e rT

Me = 8 p NT N dn - -
'e

The mass matrix calculated in accordance with equation (16f) is called a

consistent mass matrix. The lumped mass matrix is evaluated by adding all the

terms in a row of the consistent mass matrix and placing the sum on the

diagonal. Thus matrix inversion for the solution of (15) becomes trivial.

T M = z L M - e -e -e

-12-

We have written Eq. (15) in a nodal form, so that fI are the nodal forces

fe is the nodal force matrix for an element, which in the case of
..

at node 1.

a four-node quadrilateral is an 8 row column matrix.

The operation indicated by Eq. (16a) consists of using the IX array to

add the nodal forces into their appropriate locations; this is called an

ASSEMBLE operation.

The internal nodal forces, Eq. (16c), are evaluated by one point Gaussian

quadrature with stabilization, see Belytschko, et al. [91. The equations (15)

are integrated in time by the central difference explicit method. As can be

seen from Table 1, the Von Neumann algorithm i s naturally partitioned into an

element portion and a node portion. The allocation of data within arrays, as

depicted in Figure 2a, reflects the partitioning of the algorithm: element-

type arrays store the stresses, strains, and other state variables at all of

the elements in sequence; whereas node-type arrays store the displacements,

velocities, accelerations, and nodal state variables in sequence. The

interrelationship between element and nodal variables i s implemented by the

GATHER and ASSEMBLE operations. The GATHER operation is not easily vectorized

or implemented in a SIMD computer, see Flanagan [ll]. These operations are

controlled by the element-node data which determine the Le matrices in Eqs. 14
and 169. The interrelationship of the data on a Von Neumann Machine is shown

in Figure 2a. It is readily observed from Table 1 and Figure 2a that the

nodal and element data are completely separate, and are only connected by the

GATHER-ASSEMBLE operations.

,

-13-

1.

2.

3.

Table 1. Flowchart for Explicit Integration in Von Neumann Computer

Initial conditions: ~ (0) = uo; y - (- T) At = u - 0

Loop over elements: e = 1 to ne

a. GATHER ue from u, Eq. (14)

b. Evaluate strains: 5 - - B u - -e
c. Evaluate stress: = (5)

d.

..

Compute internal and external forces, fe by Eq. (16c) and (16d)

ASSEMBLE fe into f, Eq. (16a) e.

end loop over elements

Loop over nodes: I = 1 to n

-

C. U;+' = l~; + At j 111 j+1/2
-,

end loop over nodes

4. t + t + a t ; j + j + l ; g o t o 2

-14-

The SIMD algorithm and associated data structures developed here are

shown in Table 2 and Figure 2b, respectively. As can be seen, the GATHER-

ASSEMBLE operations are absent. Instead, an EXCHANGE of information in the

form of the nodal forces occurs at each time step. The nodal velocities and

displacements are stored for each element and are integrated as part of the

element calculation. This approach requires extra storage and computations

because most nodes, for the four node quadrilateral, are shared by four

elements; however, the reduction in communication makes this approach work

best. Furthermore, this approach is naturally congruent with the

architecture o f CONNECTION type machines. In these machines, the storage per

is

1 1

te

processor easily accommodates the extra nodal variables. Furthermore, it

most important to make the calculations in all processors identical. As w

be subsequently shown, separate element and nodal data bases were qu

ineffective.

Explicit time integration requires a sufficiently small time step

prevent numerical instabilities, which could

from occurring. A linearized analysis of

reveals that, for an undamped system, the stab

2
max

At I - w

to

render the results worthless,

the central difference method

e time step bound is given by:

where wmax is the highest frequency of the system. The frequency

corresponds to the maximum eigenvalue of the equation:

where (K] is the global stiffness matrix and [MI is the global mass matrix.

.
-15-

Table 2. Flowchart for Explicit Integration in SIMD Computer

1. Initial conditions: uo = y(0); i-'I2 = i (0) ; ..
j = t = 0; initialize elements

2. Do elements computations in parallel: e = 1 to ne

a. Evaluate strain: E = B u - ..e

b. Evaluate stresses: = 2 (E)

c. Compute element forces: fe by Eq. (16c) and (16d)

EXCHANGE fe "

- - j-1/2 + Atj-1/2 -*

e. ye - u, ye

end element computations

3. t + t + A t ; j + j + l ; g o t o 2

,

-16-

The task of determining the stable time step bound can be cast into a

form more amenable to the massively parallel SIMD architecture of the

CONNECTION Machine.

Rayleigh's theorem bounds the maximum frequency of the system by the

maximum frequency among all the elements of the system (see Flanagan and

Belytschko [131).

w I Maximum (w ~ ~ ~) ~
for all e

max

Furthermore, solution of the corresponding eigenvalue problem for each element

is not necessary. For the 4 node quadrilateral, the element frequency can be

estimated from (Flanagan and Belytschko [12])

where

P = density

A = area of the four node quadrilateral

x and LI are the Lame constants

Ev E
= (l + u) (1-24 and lJ = 'm

The determination of At in every step involves a sort. Equations (17)

-17-

and (20) are used to compute the stable time step for each element in the

mesh. The minimum time step thus found is used in the time integration of the

equation of motion.

C* provides reduction operators i.e. operators which read va

parallel processors and deliver a combined result. Two examples

operators in C* are:

< ? = minimum

> ? = max i mum

ues from all

of reduction

Thus to find the smallest element time step within the domain plane-stress-

quad and assign it to the mono (front end variable) DELT, one would write

DELT = (< ? = delte) (23)

The recent innovations in computer architectures have resulted in a

diverse range of tools designed to enable the programmer to exploit the

strengths o f the underlying hardware. These tools include specialized machine

programming languages such as PARIS (Parallel Instruction Set) for the

CONNECTION machine or lldialectsl' of standard programming languages such as

FORTRAN and C i.e. CM FORTRAN and C* for the CONNECTION machine. It is not

uncommon for programs in computational mechanics to approach several tens of

thousands lines in length. It is not feasible to "translate" these codes into

each dialect for every computer being constructed. However, the different

architectures need to be tested via some standard benchmark. Therefore, the

approach taken within this study has been to translate the computationally

- 18-

intensive por ion of a FORTRAN program for the transient ana,jsis of continua

into C* and linking it to a FORTRAN driving program which manages I/O. This

approach is cognizant of the vast volume of FORTRAN code which has been built

up over the past 30 years as well as the limitations of FORTRAN which impede

its use on modern computer architectures.

A major shortcoming of FORTRAN is its lack of inherent data structures.

FORTRAN was designed to strictly provide a facility for "formula trans-

lation". Although data structures can be established within FORTRAN using

various array interrelationships the process is both cumbersome and error

prone.

The C* programming language was chosen since it incorporates a data

structure which leads to a very natural style of coding in a parallel

environment. As will be subsequently shown the code written in C* is nearly

identical to the C code which would be written for a single element problem.

Thus, parallel programming in the C* programming language consists of parallel

execution of a single element code.

The algorithm discussed previously emerged from a study of several

algorithms on a one dimensional wave propagation problem. Schematic diagrams

o f the three algorithms tested on the one dimensional problem are shown in

Figure 3. In finite element analysis, the most computationally intensive

portion of the program is the calculation of element internal forces. The

first algorithm tested performed element internal force calculations on the

CONNECTION Machine, passed the calculated internal forces to the VAX 8250

front end where the accelerations were calculated and integrated to yield

updated displacements which needed to be passed back to the CONNECTION Machine

for the element internal force calculation of the subsequent time step. A

small 20 element 150 time step rod problem took 54 secs. (wall clock time).

This approach suffered from two major shortcomings. First, the power of

-19-

the CONNECTION machine was not exploited in the integration of the acceler-

ations. That is, the equations of motion were solved in a serial manner on

the front end. This accounted for 34 secs. of solution time. Second, the

communication bandwidth between the front end and the CONNECTION machine is

very narrow, therefore adding the contribution of element internal forces into

the global internal force vector stored on the front end accounted for 15

secs. o f solution time.

The second algorithm tested sought to remedy these shortcomings by

performing all calculations on the CONNECTION machine. A finite element data

structure was established through a union of two domain types similar to a

Von Neumann structure. The element internal forces were calculated within the

element domains while the equations of motion were integrated in the nodal

domains. This approach suffered from the partitioning of the CONNECTION

Machine into two parts only one of which was active at any instance of time.

Its value lies in the light it sheds on router interprocessor communication.

The same benchmark problem required a solution time of 525 secs. Calculation

o f element internal forces required 392 secs. since the values of the

displacements had to be obtained from the nodal domains.

The third approach was to establish a finite element data structure

consisting of a single domain type. A processor within the CONNECTION Machine

was assigned to each element and its nodes. Thus, the accelerations are

integrated redundantly. However, the only interprocessor communication

required is the passing of internal forces from each element of to its

adjacent neighbors. The time required for the solution of the benchmark

problem described previously was 30 secs. Upon closer examination of the

solution time required for each section of the program, it was observed that

solving the equation of motion required 12 secs. This was caused when a loop

-20-

index over the number of nodes in the element defaulted to a poly (CONNECTION

Machine) variable. Thus, this index was stored on the stack of every

processor and tested individually. The redeclaration o f this loop index as a

mono (front end) variable lowered the solution time for the entire benchmark

problem to 17 secs.

4. C* PROGRAMMING LANGUAGE

A two node, elastic rod element is presented to illucidate C* coding on

the CONNECTION Machine. The rod element was chosen instead o f the quadri-

lateral for conciseness and clarity. The differential equation governing the

motion of an elastic rod under the dynamic application of a load is analogous

to the initial value - boundary value problem given by eqs. (1) - (5b) . These

matrix-vector equations reduce to the analogous scalar equation for the one

dimensional case. Each node o f the 1D rod element has one degree of

freedom. Therefore,

u = ux
I

X E = E
I

X U -
E -

C = E
I

-21-

where L is the length of the element. Likewise, equations (15) - (169) reduce
to scalar equations over the number of nodes in the mesh.

The C programming language allows a set of related variables to be

grouped together by declaring them to be members of a structure. The C*

programming language extends the concept of a structure by allowing functions

to be associated members. The union of a structure and its associated

functions is called a domain. An example of a domain and a member is

presented in Figure 4. The structure for each rod element contains all of the

material and geometric properties o f the rod element and the kinematic, mass,

and force properties of the two adjacent nodes. The first two variables

within the rod element structure nei and nej are pointers to the two

neighboring rod elements. That i s , the values of nei and nej are addresses

for the starting memory location of the structures containing the information

for the two neighboring rod elements. In the function build-fint internal

force contributions are passed to an element from its two adjacent elements

through the use of pointers, a standard feature of the C programming

language. The conditionals test whether or not each end of the rod element

lies on the boundary of the rod. Rod elements whose end lies on the boundary

of the rod have a pointer to the null domain and hence receive no internal

force contribution from a neighboring rod element on that end of the rod. It

is important to notice that the two neighboring rod elements can be processed

within any two arbitrary processors within the CONNECTION Machine. The

programmer employs router communication to pass values of mass and internal

force to the appropriate processors. The pointers may be either calculated

-22-

through the examination of the finite element connectivity array, be input in

the context o f a neighboring element array NEIGHB, or generated in the case of

consecutively numbered elements. For the purpose of this study, the NEIGHB

array was input. Each rod element had two entries in the NEIGHB array

corresponding to its two neighboring rod elements. Rod elements bordering on

the boundary of the rod were assigned a value of zero in the corresponding

entry of the NEIGHB array.

In dynamic finite element analysis using an explicit time integration,

mesh numbering is not a critical issue as it becomes when a Newton-based

implicit time integrator is implemented. While use of router based

interprocessor communication, permits treatment of completely unstructured

meshes, it is instructive to examine the gains in speedup possible with NEWS

based interprocessor communication. NEWS based interprocessor communication

suffers from the dual drawbacks o f requiring a rigid element numbering scheme

and the necessity of specifying a limit on the number of elements along each

dimension of the mesh at compilation time. However, the implementation o f

NEWS type interprocessor communication results in a dramatic reduction in

program execution time.

The modification o f the rod domain for the implementation of the NEWS

communication scheme presented in Figure 5. For the rod element, additional

floatlng point variables are included as the receiving address for the mass

and internal force contributions of the two adjacent elements. In addition,

two "boolean" integer variables facti and factj are included to exclude

extraneous values o f internal force and mass from entering into the calcu-

lation through the ends of the rod.

Structures analogous to those implemented for the rod problem were

established for the two dimensional continuum element. In the case o f router

-23-

based interprocessor communication, the structure for each plane stress

continuum element contains all of the material and geometric properties of the

element, values of stress and strain at the gauss points and the values of the

kinematic, mass, and force variables at the four adjacent nodes. Eight

variables within the plane stress quadrilateral continuum element structure

are pointers to the eight neighboring quadrilateral elements. In the function

build-fint internal force contributions are passed to an element from its

eight adjacent neighbors through the use of pointers. These pointers were

established via the neighboring element array NEIGHB which was input. Each

plane stress quadrilateral continuum element had eight entries in the NEIGHB

array corresponding to its eight neighboring quadrilateral elements. Quadri-

lateral elements bordering on the boundary of the body were assigned a value

of zero in the corresponding entry of the NEIGHB array. The eight pointers

and the corresponding eight adjacent elements of an arbitrary element k within

a 2D mesh of plane stress quadrilateral continuum elements is illustrated in

Figure 6.

The mass and internal force contributions from the eight neighboring

elements of element k are obtained through an eight stage exchange operation

consisting o f eight router messages. For example, the internal force

contribution to nodes 0 and 3 of element k from the element whose address is

contained by the pointer neleft is obtained through the following commands.

if (neleft != (domain-plane-stress-quad *) 0) -

fint [3] += neleft -> finte[2]

fint [O] += neleft -> finte[l]

-24-

The modification of the quadrilateral domain for the implementation of

the NEWS communication scheme is analogous to the modifications required for

the rod domain. For the case of a two dimensional mesh, once NEWS inter-

processor communication is established through PARIS cal Is, a structured mesh

of m x n elements where m and n are powers of two specified by the programmer

is established. The elements are allocated among the processors so that, for

example, elements in mesh position (1,l) and (2,l) are located in adjacent

processors. Also elements in mesh positions (l,l), i.e. first row and first

column, and (1,2) are located in adjacent processors. Thus the NEIGH6 array

need only be boolean to delineate mesh boundaries. All communication takes

the form of a simultaneous shift of data along one of the NEWS grid axes. For

example, the PARIS instructions which are necessary to send the internal force

contribution for nodes 0 and 3 from the left neighbor are:

CM-send-to-news-always-lL(&ef intO,&f inte [1 J ,O,CM-upward, 32)

CM-send - to-news-a1 ways-lL(&ef i nt3 ,&f i nte [21 ,O,CM-upward, 32)

The internal force assembly operation takes on a very simple and elegant

form diagrammed in Figure 7. The mass and internal force contributions from

the eight neighboring elements of element 5 are obtained through an exchange

operation consisting of four shifts.

Staqe 1: Right Shift

The internal force values for nodes 1 and 2 are sent to temporary

variables efintO and efint3 respectively to the right neighbor o f each

e 1 ement .

-25-

Stage 2: Left Shift

The internal force values for nodes 0 and 3 are sent to temporary

variables efintl and efint2 respectively to the left neighbor of each

element.

Update the internal force at each node

fintO += efintO * factl
fintl += efintl * factr
fint2 += efint2 * factr
fint3 += efint3 * factl

At this point it is instructive to note that the nternal force contribution

o f elements 4 and 6 to element 5 have already been accounted for. Likewise,

the internal force contribution of elements 7 and 9 to element 8 and the

internal force contribution of elements 1 and 3 to element 2 have already been

accounted for. Thus, the "exchange and assembly" of the element force vector

for element 5 can be completed with two more shifts.

Stage 3: Downward Shift

The internal force values for nodes 0 and 1 are sent to temporary

variables efint3 and efint2 respectively to the bottom neighbor of each

element.

Stage 4: Upward Shift

The internal force values for nodes 2 and 3 are sent to temporary

variables efintl and efintO respectively to the top neighbor of each

element .
Update the internal force at each node

fintO += efintO * factd
fintl += efintl * factd

-26-

cat ion

call s

commu n

which

fint2 += efint2 * factu
fint3 += efint3 * factu

The distinctions between router and NEWS based interprocessor communi-

are the necessities of establishing a NEWS grid and the use of PARIS

to control the exchange operation. Router based interprocessor

cation can be used with unstructured meshes and depends on pointers

s a concept indigenous to the C programming language.

5. COMPARISONS OF THE CONNECTION MACHINE VS. THE CRAY

The issue of obtaining benchmark timings from the CONNECTION Machine is

one surrounded by quite a bit o f controversy. Although CPU time is the

universal measure of system and program performance on scalar as well as

vector/paral le1 computers, the CONNECTION Machine cannot be re1 iably

benchmarked in this manner at the current time. Front end CPU time is a

deceiving statistic since it does not account for time during which the

CONNECTION Machine is processing instructions while the front end may be idle

or, for example, working on the compilation of another user's program.

Although CONNECTION Machine busy time can be measured, this timing does not

a c c o u n t for f r o n t end CPU u s a g e for t h e i n p u t / o u t p u t phase o f the program.

With these considerations in mind, wall clock time was chosen as the benchmark

timing indicator for measuring CONNECTION Machine performance. Wall clock

time assures a measurement of an upper bound.

The following tables attempt to present a comparison between the

performance of the CONNECTION Machine vs. the performance o f the CRAY in

finite element analysis. It should be stressed that the CONNECTION Machine is

at a disadvantage to the CRAY in at least two respects. First, the times

reported for the CRAY are CPU times which include none o f the system overhead

-27-

reflected in a wall clock time. Second, the runs made on the CONNECTION

machine include the overhead of first reading in the input data on the front

end, mesh generation on the front end, and then transferring the nodal and

element data into the CONNECTION Machine. This was necessary since most

production finite element codes involve many thousand of lines devoted to 1/0

which cannot be adapted to the massively parallel architectures of machines

like the CONNECTION Machine and most finite element meshes are irregular with

elements of varying sizes which precludes the generation of geometric data for

each element of the mesh simultaneously by the CONNECTION Machine.

Nevertheless, the CONNECTION Machine out performed the CRAY by a signifi-

cant margin (on the order of 10-15 times faster) for very large problems. The

fact that the CONNECTION Machine is a first generation massively parallel

computer indicates exciting computational potential for latter generation

massively parallel computers with faster processors, larger local memory at

each node, and improved communication hardware.

CONNECTION Machine Timings

Elastic Wave Rod Problem - 15000 time steps wall clock times in seconds.

Number of VAX 8250 Front End SUN 4 Front End
E 1 ement s Router NEWS NEWS ,

8000 1384. 1116. 235.

16000 1800. 1463. 293.

32000 2592. 2213. 620.

64000 4504. 3946. 2529.

-28-

CRAY X-MP/14 vs. CONNECTION Machine Benchmark:

SUN 4 Front End - NEWS Interprocessor Communication
64000 elements 95000 time steps 3450 secs.

5.67 x secs/element'time step
(See P i e Chart 1.)

CRAY X-MP/14, fully vectorized FORTRAN code

2000 element 15000 time steps cft 1.15 compiler 51 secs. CPU

1.70 x secs/element'time step

CRAY = - = 3 17
CONNECTION 5.67

Projected Wall Clock time for a 256000 element 95000 time step run on a

64K processor CONNECTION machine I 3450 secs.

l7 12 CRAY
CONNECTION = 1.42 Potent i a1

CONNECTION Machine Timinqs

1 pt quadrature with hourglass control

Elastic Beam Bending Problem - 7500 time steps wall clock times in

seconds

Number of VAX 8250 Front End SUN 4 Front End
E 1 ement s Router NEWS NEWS

8192 4568. 2034.

16384 6174. 2962.

563.

652.

-29-

CRAY X-MP/14 vs. CONNECTION Machine Benchmark:

SUN 4 Front End - NEWS Interprocessor Communication
16384 elements 25000 time steps 1512 secs.

3.69 x secs/element'time step
(See Pie Chart 2.)

CRAY X-MP/14 FORTRAN code

1000 elements 1000 time steps cft 77 compiler 56. secs. CPU

56 x secs/element'time step

Estimated CPU time with vectorization

9.3 x secs/element*time step

CRAY - - 9.3
CONNECTION - 3.7 a '05

Projected Wall Clock time for a 65536 element 25000 time step run on a

64K processor CONNECTION machine P 1512 secs.

CRAY sa 10 CONNECT ION Potent i a1

6. CONCLUSIONS

A data management scheme and an associated algorithm for explicit or

iterative implicit finite element analysis on massively parallel partitioned

memory SIMO computers, such as the CONNECTION Machine, has been presented.' A

study of CONNECTION Machine architecture and features o f the C* programming

language along with their implications on coding finite element analysis codes

for use on the CONNECTION Machine has shown that a trade o f f between

redundancy o f calculations and interprocessor communication must be made to

-30-
P

attain peak performance. Two benchmark problems were studied to compare the

performance of the CONNECTION Machine to the CRAY XMP/14. The CONNECTION

Machine out performed the CRAY for very large problems. The architecture of

the CONNECTION Machine is well suited to finite element analysis applications

and the studies of CONNECTION Machine performance indicate exciting compu-

tational potential for latter generation massively parallel computers with

faster processors, larger local memory at each node, and improved communi-

cation hardware.

7. ACKNOWLEDGEMENTS

Computations were performed on the 16K processor CONNECTION Machine at

the Advanced Computing Research Facility, Mathematics and Computer Science

Division, Argonne National Laboratory. The support of the Department o f

Educational Programs, Reactor Analysis and Safety Division, Computing and

Telecommunications Division, and the Center for Energy Research Computations

at Argonne National Laboratory is gratefully acknowledged. Support of NASA-
for two of the authors (TB and EJP)

Langley under grant NAG -1-650Ais gratefully acknowledged.

8 . REFERENCES

111 Thinking Machines Corporation, The Connection Machine System Software
Documentation Set, Version 5.0

Model CM-2 Technical Summary
CM Front-End Subsystems
CM Programming in Cf
CM Parallel Instruction Set

Thinking Machines Corporation, 245 First Street, Cambridge, Massachusetts
02142-1214.

[Z] B. Nour-Omid and K. C. Park, Solving Structural Mechanics Problems on the
CALTECH Hypercube Machine, Computer Methods in Applied Mechanics and
Enqineerinq 61 (1987) 161-176, North-Holland.

[3] Russel J. Doty, FE Analysis: The Decathlon For Computers, Mechanical
Engineerinq, November 1988, 62-68.

-31-

[4] W. Daniel Hillis, The CONNECTION Machine, Scientific American, Volume
256, Number 6, June 1987, 108-115, Scientific American Inc., 415 Madison
Ave., New York, NY 10017.

[51 George R. Desrouchers, Principles of Parallel and Multiprocessing,
Intertext Publications, Inc., McGraw-Hill Book Company, New York, 1987.

[6] M. J. Flynn, Some Computer Organizations and Their Effectiveness, - IEEE
Transactions on Computers, September 1972.

[7] 0. L. Greenwell, R. K. Kalia, J. C. Patterson, P. D. Vashista, "Molecular
Dynamics Algorithm on the CONNECTION Machine," International Journal o f
High-speed Computinq, World Scientific Publishing Company, to be
published in 1989.

[8 J T. Belytschko, "An Overview o f Semidiscretization and Time Integration
Procedures,' in Computational Methods for Transient Analysis, ed. by
T. Belytschko and T. J. R. Hughes, North Holland, Amsterdam, 1983, pp. 1-
66.

[9] T. Belytschko, J. S-J Ong, W. K. Liu and J. M. Kennedy, nHourglass
Control in Linear and Nonlinear Problems," Computer Methods in Applied
Mechanics and Enqineering, - 43, 1984, pp. 251-276.

[lo) T. Belytschko and N. Gilbertsen, "Concurrent and Vectorized Mixed Time.
Explicit Nonlinear Structural Dynamics Algorithm,' in Parallei
Computations and Their Impact on Mechanics, ed. by A. K. Noor, ASME,
New York, 1987, p. 279-290.

[ll] 0. P. Flanagan and L. M. Taylor, "Structuring Data for Concurrent
Vectorized Processing in a Transient Dynamics Finite Element Program,"
ibid, pp. 280-291.

(121 D. P. Flanagan and T. Belytschko, "Eigenvalues and Stable Time Steps for
the Uniform Strain Hexahedron and Quadrilateral ,I' Journal of Applied
Mechanics, 51, 1984, pp. 35-40.

1131 0. P. Flanagan and T. Belytschko, "Simultaneous Relaxation in Structural
Dynamics,11 Journal of the Engineering Mechanics Division, ASCE, 107,
1981, pp. 1039-1055.

[14] W. Daniel Hillis, The CONNECTION Machine, The MIT Press, Cambridge,
Massachusetts, 1987.

d . .
M

4

0
4

d

0
0

-32-
4

4

4

0
d

4

3
OtI
.d

c4

0

E l e m e n t
D o m a i n

-33-
N o d a l

F I N T D o m a i n

Figure 2 a

(ASSEMBLE) a
(GATHER)

DISPLACEMENTS

Von Neumann Data Structure

1 0
I

0 I EXCHANGE

1 EXCHANGE

I I I

Figure 2b SIMD Data St ruc ture

1.

-34-

Calculation of Internal Force on the Connection Machine

F = m a

Solution of Equation of Motion on Front End

2. Establishing a Finite Element Data Structure with Two Domain Types

Element
Domain

Nodal
Domain FINT

3. Establish a Finite Element Data Structure with a Single Domain Type

1
0 0

Figure 3

-35-

mnle of a domain

domain r od-elem en t
{ domain rod-element *nei

domain rod-element *nej
int node[NPELE]
float xlength
float csarea
float densty
float emass
float ym
float stress
float finte
float delt
float coord [NPELE]
float disp[NPELE], vel[NPELE], acc[NPELE]
float fint[NPELE]
float fext[NPELE]
float mass[NPELE]
int bc[NPELE] Y 1

MuItiDle instances of a domain via an arrav

domain rod-element element [MAXEL]

Y

9

Y

9

9

Y

9

9

9

Y

9

Y

Y

Y

9

9

FxamDles o f member functions

rod-element: :calc-finto
stress = (ym / xlength) * (disp[l] - disp[O]) ;
finte = stress * area
fint[O] = - finte 9

fint[l] = finte Y 1

{
9

rod-element:: build-finto
{ if (nej != (domain rod-element *) 0) fint[l] -= nej->finte ;

if (nei != (domain rod-element *) 0) fint[O] += nei->finte ; >,

Activation of multiDIe Drocesso rs is achieved through a
Selection statement

[domain rod-element]. { calc-finto ;)

Figure 4

-36-

le of a domain

domain rod-element
{ int indx

int index
int node[NPELE]
float
float
float
float
float
float
float
float
float

xlength
csarea
dens ty
emass, nei-emass, nej-emass
Ym
stress
finte, nei-finte, nej-finte
delt

coord[NPELE]
float disp[NPELE], vel [NPELE], acc[NPELE] 9

float fint[NPELE]
float fext[NPELE]
float mass [NPELE]
int bc[NPELE]
int facti, factj

Estab1 ishing a CONNECT ION Machine geomet rv

rod-element e1ement::initialize-element-domain()

/ * Select all processors * /
{

/ * All processors get their NEWS coordinate * /

1

CM-set-context()

CM-my-news-coordinate- 1 L(&index,0,32)

?

9

9

9

9 1 ;

Example of NEWS communication

rod-element:: build-finto
{
/ * Each element receives the values of the element internal

forces from its neightbors * /
CM~send~to~news~always~lL(&nej~finte,&finte~O,CM~downward,32) ;
CM-send-to-news-alway s- 1 L(&nei-fin te,&finte,O,CM_upward,32) ;

fint[O] += nei-finte * facti
fint[l] -= nej-finte * factj

;
;

1

Figure 5

ne diag u plef t

nelef t

nediagdownlef t

-37-

neup

k

nedown

nediagu pright

neright

nediag downright

Figure 6

Stage 1:

7 +

4 -

l r

Stage 2:

8 - 9

5 - 6

2 4 3

3 2

0 1

Figure 7

Staae 3: -39-

Staae 4 :

Figure 7

-40-

C

.r E"
b
0
0
0
Ir, m

~

-41-

